Pseudorandom Permutations of a Prescribed Type [NR00]

Orr Paradise*and Neil Vexler[†]

March 3, 2019

An interpretation of [NR00], mistakes are likely ours.

Part one of two in a talk on pseudorandom objects of a prescribed type (notes for the second part are unavailable, unfortunately.

1 Introduction

1.1 Cycle notation

Let S_n be the set of bijections from [n] to itself. Endowed with the composition operation (\circ) it forms a group. Further, each $\sigma \in S_n$ can be decomposed into its *cycles*:

- 1. Initialize N := [n] and an empty cycle set. While $N \neq \emptyset$:
 - (a) Choose $i \in N$, and initialize $\gamma = (i)$. Let $j := \sigma(i)$. While $j \neq i$:
 - i. Append j to γ and let $j := \sigma(j)$.
 - (b) Add c to the cycle set and update $N := N \setminus \gamma$.

We know of Cauchy's two-line notation for permutations, in which we represent $\sigma \equiv \begin{pmatrix} 1 & \cdots & n \\ \sigma(1) & \cdots & \sigma(n) \end{pmatrix}$.

We can now represent σ by liciting its angle σ by σ (1).

We can now represent σ by listing its cycles, $\sigma \equiv (1, \sigma(1), \dots) (i, \sigma(i), \dots), \dots$. Notice that this representation is unique only up to the order of cycles, and the starting element of each cycle¹. Also, single-element cycles are usually omitted.

We associate with each permutation σ its cycle type CT (σ) , which is simply a list of the lengths of each cycle of σ . Again this property is determined only up to the order of cycles. Three examples:

Two-line notation	Cycle notation	Cycle Type
$ \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{array}\right) $	$(1,2,3,4) \equiv (4,1,2,3)$	(4)
$ \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{array}\right) $	(1,2)(3,4)	(2,2)
$ \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{array}\right) $	$(1,3)(1)(4) \equiv (1,3)$	$(1,1,2) \equiv (2,1,1)$

For any cycle type C, let $S_n(C) := \{\sigma \in S_n | \operatorname{CT}(\sigma) = C\}$ be the set of all permutations on [n] elements with cycle type C. Elements of $S_n(C)$ will be known as C-permutations (on n elements). A final important notion is the *conjugation of* $\sigma \in S_n$ by $\pi \in S_n$, defined by $\sigma^{\pi} := \pi \circ \sigma \circ \pi^{-1}$. An elementary result in group theory is that $\operatorname{CT}(\sigma) = \operatorname{CT}(\sigma^{\pi})$ and that $S_n(C)$ is the set of all conjugations of σ , hence $S_n(C)$ is known as σ 's *conjugacy class*. We will in fact show a stronger result in lemma 2.

^{*}orr.paradise@weizmann.ac.il

[†]neil.vexler@weizmann.ac.il

¹This depends on the choice of i in $\frac{1}{a}$ and can be canonicalized by always choosing $i = \min N$.

²These two definitions are nonstandard.

1.2 Pseudo-random Permutations

Definition 1. A family of permutations $\mathcal{P}_n = \left\{ P_k \in S_n | k \in \{0,1\}^l \right\}$ is called *pseudo-random* if it satisfies the following:

- 1. Succinct Representation: The key length l is polynomial in the input/output length n.
- 2. Efficient Computation: For any k, P_k , P_k^{-1} can be computed efficiently, i.e in time polynomial in l.
- 3. Indistinguishability: No efficient distinguisher, given oracle access to $\pi, \pi^{-1} \in S_n$ can distinguish whether τ is a random member of \mathcal{P}_n or a truly random permutation with non-negligible probability. That is, for any efficient distinguisher D there exists a negligible negl(·) such that

$$\left| \mathbb{P}_{k \sim U\left(\{0,1\}^{l}\right), D} \left[D^{P_{k}, P_{k}^{-1}} \left(1^{n}\right) = 1 \right] - \mathbb{P}_{\pi \sim U\left(S_{n}\right), D} \left[D^{\pi, \pi^{-1}} \left(1^{n}\right) = 1 \right] \right| \leq \operatorname{negl}\left(n\right)$$

For any cycle type C we could replace S_n with $S_n(C)$ in the above definition to obtain a definition for $pseudo-random\ C$ -permutations. Notice that the adversary would then be required to distinguish between a random member of \mathcal{P}_n and a random C-permutation. Also notice that we require \mathcal{P}_n to truly be a family of C-permutations and not just computationally indistinguishable from one—more on this later.

2 Pseudo-random C-permutations

The first main result we will see is due to Moni Naor and Omer Reingold [NR00], and asserts that if there are pseudo-random permutations then there are pseudo-random C-permutations for any cycle type C. Also, these pseudo-random C-permutations have the fast-forward property, meaning that they can be iterated at 'zero' cost.

2.1 The construction

Let \mathcal{P}_n be a family of pseudo-random permutations, and let C be a cycle type. The construction is straightforward. Fix $\sigma \in S_n(C)$. The family is

$$\mathcal{F}_n := \left\{ F_k \coloneqq \sigma^{P_k} \coloneqq P_k \circ \sigma \circ P_k^{-1} | k \in \{0, 1\}^l \right\}$$

2.2 Correctness

We turn to to prove that \mathcal{F}_n is a family of pseudo-random C-permutations.

2.2.1 Truthfulness

We first need to prove that indeed $F_k \in S_n(C)$ for all k. We prove a stronger result.

Lemma 2. If π is a random permutation then σ^{π} is a random C-permutation. That is, if $\pi \sim U(S_n)$ then $\sigma^{\pi} \sim U(S_n(C))$.

Proof. Let $\tau, \tau' \in S_n(C)$. We need to show that

$$\mathbb{P}_{\pi} \left[\sigma^{\pi} = \tau \right] = \mathbb{P}_{\pi} \left[\sigma^{\pi} = \tau' \right]$$

Since π is uniformly chosen from S_n , letting $\Pi = \{\pi \in S_n | \sigma^{\pi} = \tau\}$ and $\Pi' = \{\pi \in S_n | \sigma^{\pi} = \tau'\}$ it suffices to prove that $|\Pi| = |\Pi'|$. This is shown by constructing a bijection between the sets. Assume there exists $P \in S_n$ such that $\tau' = \tau^P$. The bijection from Π to Π' is then $\pi \mapsto P \circ \pi$.

• It is well defined: If $\pi \in \Pi$ then $\sigma^{P \circ \pi} = (\sigma^{\pi})^P = \tau^P = \tau'$, so $P \circ \pi \in \Pi'$.

• It is invertible: Its inverse is clearly $\pi' \mapsto P^{-1} \circ \pi'$, and is well defined since if $\pi' \in \Pi'$ then $\sigma^{P^{-1} \circ \pi'} = \left(\sigma^{\pi'}\right)^{P^{-1}} = \left(\tau'\right)^{P^{-1}} = \left(\tau^P\right)^{P^{-1}} = \tau$.

What's left is to construct such P. Since $CT(\tau) = CT(\tau')$ we can uniquely associate each cycle γ in τ with a cycle of same length γ' in τ' . For any such cycles $\gamma = (i_0, \ldots, i_g)$ and $\gamma' = (i'_0, \ldots, i'_g)$, let $P(i'_j) := i_j$. This defines a permutation $P \in S_n$ for which $\tau' = \tau^P$. Indeed

- P is a well defined permutation because each $i \in [n]$ appears exactly once in the cycles of τ and of τ' , and the correspondence of those cycles is 1-to-1 and onto.
- For any $i \in [n]$, assume that $i = i_j$ in cycle γ of τ , with corresponding i'_j in cycle γ' of τ ,

$$\tau'\left(P\left(i_{j}\right)\right) = \tau'\left(i_{j}'\right) = i_{j+1 \mod q}' = P\left(i_{j+1 \mod q}\right) = P\left(\tau\left(i_{j}\right)\right)$$

therefore $\tau' \circ P = P \circ \tau$ and so $\tau' = \tau^P$.

Proving the first two axioms of pseudo-randomness is easy, so we turn to prove indistinguishability.

2.2.2 Indistinguishability

Suppose that we have an efficient distinguisher D for which

$$\left| \mathbb{P}_{k \sim U\left(\{0,1\}^{l}\right), D} \left[D^{F_{k}, F_{k}^{-1}} \left(1^{n}\right) = 1 \right] - \mathbb{P}_{\tau \sim U\left(S_{n}(C)\right), D} \left[D^{\tau, \tau^{-1}} \left(1^{n}\right) = 1 \right] \right| > \frac{1}{p(n)}$$

for some polynomial p. Let t(n), q(n) denote the polynomial time, query complexities (resp.) of D on inputs of length n. We construct a distinguisher E that will contradict \mathcal{P}_n being a pseudo-random permutation family.

Algorithm 1 The distinguisher E

The run $E^{\pi,\pi^{-1}}(1^n)$ simulates D in the following way:

- 1. Let $\tau = \sigma^{\pi} = \pi \circ \tau \circ \pi^{-1}$. E simulates $D^{\tau,\tau^{-1}}(1^n)$ as follows:
 - (a) When D makes the query $\tau(x)$, E queries its oracle twice: Once for $z := \pi^{-1}(x)$ and again for $y := \pi(\sigma(z))$. E answers D's query with y.
 - (b) When D makes the query $\tau^{-1}(x)$, E queries its oracle twice: Once for $z := \pi(x)$ and gain for $y := \pi^{-1}(\sigma(z))$. E answers D's query with y.
- 2. E answers the same as D.

Denoting σ 's runtime with s—which is fixed in the context of this analysis. Then E's query and runtime complexities are

$$q_{E}\left(n\right)=2q_{D}\left(n\right)$$

$$t_{E}\left(n\right)\leq\underbrace{q\left(n\right)\left(2+s\right)}_{\text{queries of }D\text{ other operations of }D}\underbrace{p\left(n\right)\left(3+s\right)}_{\text{other operations of }D}$$

so E is efficient, and it holds that

$$\mathbb{P}_{k \sim U\left(\{0,1\}^{l}\right), D}\left[D^{F_{k}, F_{k}^{-1}}\left(1^{n}\right) = 1\right] = \mathbb{P}_{k \sim U\left(\{0,1\}^{l}\right), E}\left[E^{P_{k}, P_{k}^{-1}}\left(1^{n}\right) = 1\right]$$

$$\mathbb{P}_{\tau \sim U\left(S_{n}(C)\right), D}\left[D^{\tau, \tau^{-1}}\left(1^{n}\right) = 1\right] = \mathbb{P}_{\pi \sim U\left(S_{n}\right), D}\left[D^{\sigma^{\pi}, (\sigma^{\pi})^{-1}}\left(1^{n}\right) = 1\right] = \mathbb{P}_{\pi \sim U\left(S_{n}\right), E}\left[E^{\pi, \pi^{-1}}\left(1^{n}\right) = 1\right]$$

2.2.3 Fast Forward Property

An appealing property of this construction is that it enables fast-forwarding. Denote the runtime of computing $\sigma^{(m)} = \sigma \circ \cdots \circ \sigma$ by s(m). Notice that

$$F_k^{(m)} = \left(P_k \circ \sigma \circ P_k^{-1}\right)^{(m)} = \left(P_k \circ \sigma \circ P_k^{-1}\right) \circ \left(P_k \circ \sigma \circ P_k^{-1}\right) \circ \cdots \circ \left(P_k \circ \sigma \circ P_k^{-1}\right) = P_k \circ \sigma^{(m)} \circ P_k^{-1}$$

so iterating m times over F_k adds only s(m) to the evaluation runtime complexity. Therefore if we assume that σ also has the fast forward property³, that is that s(m) = s(m') for all m, m', then we could have provided the distinguisher D with more power, namely issuing queries to $\tau^{(m)}$, while maintaining security. If we assume σ^{-1} has the fast forward property as well, this holds also for negative m.

References

[NR00] Naor, Moni and Omer Reingold. "Constructing Pseudo-Random Permutations with a Prescribed Structure." Journal of Cryptology 15 (2000): 97-102.

³ For example when σ is the cyclic permutation $\sigma=(1,\ldots,2^n)$, then $\sigma^{(m)}\left(x\right)=x+m\mod 2^n$.